art.attacks.inference.model_inversion
¶
Module providing model inversion attacks.
Model Inversion MIFace¶
- class art.attacks.inference.model_inversion.MIFace(classifier: CLASSIFIER_CLASS_LOSS_GRADIENTS_TYPE, max_iter: int = 10000, window_length: int = 100, threshold: float = 0.99, learning_rate: float = 0.1, batch_size: int = 1, verbose: bool = True)¶
Implementation of the MIFace algorithm from Fredrikson et al. (2015). While in that paper the attack is demonstrated specifically against face recognition models, it is applicable more broadly to classifiers with continuous features which expose class gradients.
Paper link: https://dl.acm.org/doi/10.1145/2810103.2813677- __init__(classifier: CLASSIFIER_CLASS_LOSS_GRADIENTS_TYPE, max_iter: int = 10000, window_length: int = 100, threshold: float = 0.99, learning_rate: float = 0.1, batch_size: int = 1, verbose: bool = True)¶
Create an MIFace attack instance.
- Parameters
classifier – Target classifier.
max_iter (
int
) – Maximum number of gradient descent iterations for the model inversion.window_length (
int
) – Length of window for checking whether descent should be aborted.threshold (
float
) – Threshold for descent stopping criterion.batch_size (
int
) – Size of internal batches.verbose (
bool
) – Show progress bars.
- infer(x: Optional[ndarray], y: Optional[ndarray] = None, **kwargs) ndarray ¶
Extract a thieved classifier.
- Return type
ndarray
- Parameters
x – An array with the initial input to the victim classifier. If None, then initial input will be initialized as zero array.
y – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).
- Returns
The inferred training samples.